Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{Tl}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{3}$

$\left.168.9(5)^{\circ}\right]$ and by the difference in $\mathrm{Tl}-\mathrm{Cl}$ lengths and $\mathrm{Cl}-\mathrm{Tl}-\mathrm{Cl}$ angles. Packing effects are probably responsible for the distortion. As can be seen in Fig. 2, the two $\mathrm{Tl}-\mathrm{O}$ bonds bend toward the line through $\mathrm{Cl}(1)$ and $\mathrm{Cl}(2)$ and are a little nearer $\mathrm{Cl}(1)$. This is consistent with the opening of the $\mathrm{Cl}(1)-\mathrm{Tl}-\mathrm{Cl}(2)$ angle and with the elongation of the $\mathrm{Tl}-\mathrm{Cl}(1)$ and $\mathrm{Tl}-\mathrm{Cl}(2)$ bonds

Fig. 2. Projection of the molecule on the equatorial plane showing the distortion of the coordination polyhedron around the Tl atom.
with respect to the other $\mathrm{Tl}-\mathrm{Cl}$ bond. Another feature which could also be attributed to packing effects is the difference in the $\mathrm{Tl}-\mathrm{O}(1)-\mathrm{N}(1)$ and $\mathrm{Tl}-\mathrm{O}(11)-\mathrm{N}(11)$ angles (120.1 and 111.5°, respectively).

References

Baxter, J. \& Gafner, G. (1972). Inorg. Chem. 11, 176178.

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 72-98. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Martinez-Ripoll, M. \& Cano, F. H. (1975). PESOS program. Instituto Rocasolano, CSIC, Serrano 119, Madrid-6, Spain.
Schwarzenbach, D. (1972). ORABS. Univ. of Zürich.
Walton, R. A. (1968). Inorg. Chem. 7, 640-648.

Bis(tetraphenylarsonium) Tris(2,2-diselenido-1,1-ethylenedicarbonitrile$\mathbf{S e}, \mathbf{S e} e^{\prime}$)nickelate(IV)

By J. Kaiser, W. Dietzsch and R. Richter
Sektion Chemie, Karl-Marx-Universität Leipzig, Liebigstrasse 18, 701 Leipzig, German Democratic Republic
and L. Golič and J. Šiftar
Department of Chemistry, University of Ljubljana, Murnikova 6, 61001 Ljubljana, Yugoslavia

(Received 24 July 1979; accepted 11 September 1979)

Abstract

As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]_{2}\left[\mathrm{Ni}\left\{\mathrm{Se}_{2} \mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}\right\}_{3}\right], \quad 2 \mathrm{C}_{24^{-}}\) $\mathrm{H}_{20} \mathrm{As}^{+} . \mathrm{C}_{12} \mathrm{~N}_{6} \mathrm{NiSe}_{6}^{2-}$, triclinic, $P \overline{1}, a=14.434$ (2), $b=$ 14.567 (2), $c=16.869$ (2) $\AA, \alpha=105.48$ (1), $\beta=$ $101.90(1), \gamma=113.42(1)^{\circ}, D_{o}=1.72(1), Z=2, D_{c}$ $=1.729 \mathrm{Mg} \mathrm{m}^{-3} ; R=0.054$ for 3643 reflexions with I $>3 \sigma(I)$. The six Se atoms surround the Ni atom in a distorted octahedral coordination. Some average distances are $\mathrm{Ni}-\mathrm{Se} 2.387(1), \mathrm{Se}-\mathrm{Se}$ (intraligand)

0567-7408/80/010147-04\$01.00
2.995 (1), $\mathrm{Se}-\mathrm{Se}$ (interligand) 3.515 (1) and $\mathrm{Se}-\mathrm{C}$ 1.86 (1) \AA. The angle θ and the ratio s / h are 49.5° and 1.29 respectively.

Introduction. For tris-chelates of transition metals containing unsaturated 1,1 - or 1,2 -diseleno ligands two different coordination geometries were found. Whereas the diselenolene chelate $\left[\mathrm{Mo}\left\{\mathrm{Se}_{2} \mathrm{C}_{2}\left(\mathrm{CF}_{3}\right)_{2}\right\}_{3}\right]$ has a © 1980 International Union of Crystallography
trigonal-prismatic coordination geometry (Pierpont \& Eisenberg, 1971), the central ion $\mathrm{Ni}^{\mathrm{IV}}$ in $\left[\mathrm{Ni}\left\{\mathrm{Se}_{2} \mathrm{CN}-\right.\right.$ $\left.\left.\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right\rangle_{3}\right] \mathrm{Br}$ has a distorted octahedral arrangement (Beurskens \& Cras, 1971). For the 2,2-diselenido-1,1-ethylenedicarbonitrile ligand a further type of $\mathrm{Ni}^{\mathrm{IV}}$ tris-chelate was found. The spectral properties suggested a distorted octahedral coordination geometry (Dietzsch, Kirmse, Hoyer, Marov \& Belyaeva, 1978). For an estimation of the actual distortion of the octahedral coordination geometry and for an evaluation of the difference from the cationic $\mathrm{Ni}^{1 \mathrm{~V}}$ tris(diselenocarbamates) the structure of bis(tetraphenylarsonium) tris(2,2-diselenido-1,1- ethylenedicarbonitrile - $\mathrm{Se}, \mathrm{Se} e^{\prime}$)nickelate(IV) has been determined. The compound was prepared as described by Dietzsch, Kirmse, Hoyer, Marov \& Belyaeva (1978). Black needles were grown by slow evaporation from an acetone/2-propanol solution under vacuum.

The cell parameters were obtained by least squares from the 2θ values of 45 high-order reflexions measured on a diffractometer. The intensities were collected with an Enraf-Nonius CAD-4 diffractometer. Experimental conditions were: graphite-monochromatized Mo $K \alpha$ radiation ($\lambda=0.71069 \AA$), $\omega-2 \theta$ scan, $\theta_{\text {min }}=$ $3^{\circ}, \theta_{\text {max }}=28^{\circ}, 2 \theta$ scan width $\left(^{\circ}\right): 0.6+0.2 \tan \theta$, aperture (mm): $2.4+0.9 \tan \theta$, maximum scan time 30 s , background: one quarter of the scan time at each of the scan limits. 14524 independent reflexions were recorded and 3643 of these with $I>3 \cdot 0 \sigma(I)$ were used in the analysis. Corrections were applied for Lorentz and polarization effects but not for absorption. The structure was solved with MULTAN 77 (Main, Woolfson, Lessinger, Germain \& Declercq, 1977) and refined with anisotropic thermal parameters for all heavy atoms and with anomalous-dispersion corrections for $\mathrm{Se}, \mathrm{As}, \mathrm{Ni}, \mathrm{N}$ and C . The best E map (CFOM $=2.514$) obtained with unit weights (ABSFOM $=$ $0.983, \psi_{0}=122$ and RESID $=13.06$ for 250 E's) revealed the positions of the Se, Ni and As atoms. The function minimized was $\sum w\left(\left|F_{o}\right|-K\left|F_{c}\right|\right)^{2}$ where the weighting function was determined empirically: $w=$ $w_{F} w_{S}$ where $w_{F}\left(\left|F_{o}\right|<A\right)=\left(\left|F_{o}\right| / A\right)^{c}, w_{F}\left(\left|F_{o}\right|>B\right)$ $=\left(B /\left|F_{o}\right|\right)^{D}, w_{F}\left(A<\left|F_{o}\right|<B\right)=1.0$ and $w_{S}(\sin \theta<$ $E)=(\sin \theta / E)^{H}, w_{S}(\sin \theta>G)=(G / \sin \theta)^{s}, w_{s}(E<$ $\sin \theta<G)=1 \cdot 0$. The weighting-function parameters were: $A=40 \cdot 0, B=100 \cdot 0, C=1 \cdot 0, D=1 \cdot 0, E=$ $0 \cdot 20, G=0 \cdot 27, H=1 \cdot 0, J=1 \cdot 0$. The positional parameters of the H atoms were calculated and included with $U=0.06 \AA^{2}$, but were not refined. The final $R=\sum\left\|F_{o}\left|-\left|F_{c} \| / \sum\right| F_{o}\right|=0.054\right.$ and $R_{w}=$ 0.066 for 3643 reflexions and 661 parameters. The final difference map was featureless.

All calculations were performed on the CDC Cyber 172 computer of RRC Ljubljana with the XRAY system (Stewart, Kruger, Ammon, Dickinson \& Hall, 1972). Scattering factors for the non-hydrogen atoms were from Cromer \& Mann (1968), anomalous-

Table 1. Final positional parameters $\left(\times 10^{4}\right.$ for Ni and $\mathrm{Se}, \times 10^{3}$ for N and C) for the atoms of the anion with e.s.d.'s in parentheses

	x	y	z
	x	y	
$\mathrm{Ni}(1)$	$4197(2)$	$7770(2)$	$2821(1)$
$\mathrm{Se}(1)$	$5430(2)$	$7445(2)$	$3742(1)$
$\mathrm{Se}(2)$	$5068(1)$	$9638(2)$	$3783(1)$
$\mathrm{Se}(3)$	$2941(1)$	$7237(2)$	$3547(1)$
$\mathrm{S}(4)$	$5462(1)$	$7853(2)$	$2092(1)$
$\mathrm{Se}(5)$	$3419(2)$	$8518(2)$	$1964(1)$
$\mathrm{Se}(6)$	$2890(2)$	$5970(2)$	$1810(1)$
$\mathrm{N}(1)$	$819(1)$	$759(1)$	$452(1)$
$\mathrm{N}(2)$	$14(1)$	$339(1)$	$105(1)$
$\mathrm{N}(3)$	$325(2)$	$1098(2)$	$161(1)$
$\mathrm{N}(4)$	$45(1)$	$517(2)$	$374(1)$
$\mathrm{N}(5)$	$807(1)$	$782(1)$	$195(1)$
$\mathrm{N}(6)$	$545(2)$	$1249(2)$	$435(2)$
$\mathrm{C}(49)$	$622(1)$	$766(1)$	$300(1)$
$\mathrm{C}(50)$	$720(1)$	$768(1)$	$313(1)$
$\mathrm{C}(51)$	$774(1)$	$764(1)$	$389(1)$
$\mathrm{C}(52)$	$62(1)$	$415(2)$	$171(1)$
$\mathrm{C}(53)$	$119(1)$	$510(1)$	$248(1)$
$\mathrm{C} 54)$	$372(2)$	$1090(2)$	$219(1)$
$\mathrm{C}(55)$	$432(1)$	$1080(2)$	$291(1)$
$\mathrm{C}(56)$	$213(1)$	$593(1)$	$257(1)$
$\mathrm{C}(57)$	$430(1)$	$986(1)$	$291(1)$
$\mathrm{C}(58)$	$73(1)$	$512(1)$	$317(1)$
$\mathrm{C}(59)$	$766(1)$	$775(1)$	$248(2)$
$\mathrm{C}(60)$	$494(2)$	$1174(2)$	$368(2)$

Fig. 1. Numbering of the atoms.
dispersion corrections from Cromer \& Liberman (1970), and H atom scattering factors from Stewart, Davidson \& Simpson (1965). The positional parameters of the atoms of the anion are listed in Table 1.* Important distances and angles are in Table 2. The numbering of the atoms is shown in Fig. 1 and a stereoscopic drawing (Johnson, 1965) in Fig. 2.

[^0]Table 2. Bond distances (\AA) and angles (${ }^{\circ}$) for the anion with e.s.d.'s in parentheses

$\mathrm{Ni}(1)-\mathrm{Se}(1) \quad 2.3$	2.391 (4)	$\mathrm{N}(3)-\mathrm{C}(54) \quad 1.1$	$1 \cdot 14$ (4)
$\mathrm{Ni}(1)-\mathrm{Se}(2) \quad 2.38$	2.388 (3)	$\mathrm{N}(4)-\mathrm{C}(58) \quad 1.11$	$1 \cdot 11$ (3)
$\mathrm{Ni}(1)-\mathrm{Se}(3) \quad 2.385$	2.385 (3)	$\mathrm{N}(5)-\mathrm{C}(59) \quad 1.18$	$1 \cdot 18$ (3)
$\mathrm{Ni}(1)-\mathrm{Se}(4) \quad 2.38$	2.387 (4)	$\mathrm{N}(6)-\mathrm{C}(60) \quad 1.17$	$1 \cdot 17$ (3)
$\mathrm{Ni}(1)-\mathrm{Se}(5) \quad 2.385$	2.385 (4)	$\mathrm{C}(49)-\mathrm{C}(50) \quad 1.36$	1.36 (3)
$\mathrm{Ni}(1)-\mathrm{Se}(6) \quad 2.387$	2.387 (2)	C(50)-C(51) 1.4	1.40 (3)
$\mathrm{Se}(1)-\mathrm{C}(49) \quad 1.8$	1.86 (2)	$\mathrm{C}(50)-\mathrm{C}(59) \quad 1.30$	1.39 (3)
$\mathrm{Se}(2)-\mathrm{C}(57) \quad 1.83$	1.83 (2)	$\mathrm{C}(52)-\mathrm{C}(53) \quad 1.4$	1.40 (2)
$\mathrm{Se}(3)-\mathrm{C}(56) \quad 1.86$	1.86 (1)	$\mathrm{C}(53)-\mathrm{C}(56) \quad 1.36$	1.36 (3)
$\mathrm{Se}(4)-\mathrm{C}(49) \quad 1.8$	1.86 (2)	C(53)-C(58) 1.45	1.45 (2)
$\mathrm{Se}(5)-\mathrm{C}(57) \quad 1.8$	1.87 (1)	$\mathrm{C}(54)-\mathrm{C}(55) \quad 1.4$	1.41 (3)
$\mathrm{Se}(6)-\mathrm{C}(56) \quad 1.8$	1.85 (2)	$\mathrm{C}(55)-\mathrm{C}(57) \quad 1.36$	1.36 (3)
$\mathrm{N}(1)-\mathrm{C}(51) \quad 1.16$	1.16 (3)	C(55)-C(60)	1.40 (3)
$\mathrm{N}(2)-\mathrm{C}(52) \quad 1.17$	$1 \cdot 17$ (2)		
$\mathrm{Se}(1)-\mathrm{Ni}(1)-\mathrm{Se}(2)$	91.4 (1)	$\mathrm{N}(1)-\mathrm{C}(51)-\mathrm{C}(50)$	
$\mathrm{Se}(1)-\mathrm{Ni}(1)-\mathrm{Se}(3)$	91.4 (1)	$\mathrm{N}(5)-\mathrm{C}(59)-\mathrm{C}(50)$	178 (2)
$\mathrm{Se}(1)-\mathrm{Ni}(1)-\mathrm{Se}(4)$	77.9 (1)	$\mathrm{Se}(3)-\mathrm{C}(56)-\mathrm{Se}(6)$	107 (1)
$\mathrm{Se}(1)-\mathrm{Ni}(1)-\mathrm{Se}(6)$	101.8(1)	$\mathrm{Se}(3)-\mathrm{C}(56)-\mathrm{C}(53)$	125 (1)
$\mathrm{Se}(2)-\mathrm{Ni}(1)-\mathrm{Se}(3)$	93.3 (1)	$\mathrm{Se}(6)-\mathrm{C}(56)-\mathrm{C}(53)$	128 (1)
$\mathrm{Se}(2)-\mathrm{Ni}(1)-\mathrm{Se}(4)$	98.6 (1)	$\mathrm{C}(56)-\mathrm{C}(53)-\mathrm{C}(52)$	121 (2)
$\mathrm{Se}(2)-\mathrm{Ni}(1)-\mathrm{Se}(5)$	77.7 (1)	$\mathrm{C}(56)-\mathrm{C}(53)-\mathrm{C}(58)$	122 (1)
$\mathrm{Se}(3)-\mathrm{Ni}(1)-\mathrm{Se}(5)$	$100 \cdot 7$ (1)	$\mathrm{N}(2)-\mathrm{C}(52)-\mathrm{C}(53)$	177 (3)
$\mathrm{Se}(3)-\mathrm{Ni}(1)-\mathrm{Se}(6)$	77.5 (1)	$\mathrm{N}(4)-\mathrm{C}(58)-\mathrm{C}(53)$	176 (2)
$\mathrm{Se}(4)-\mathrm{Ni}(1)-\mathrm{Se}(5)$	92.1 (1)	$\mathrm{Se}(2)-\mathrm{C}(57)-\mathrm{Se}(5)$	108 (1)
$\mathrm{Se}(4)-\mathrm{Ni}(1)-\mathrm{Se}(6)$	93.1 (1)	$\mathrm{Se}(2)-\mathrm{C}(57)-\mathrm{C}(55)$	129 (1)
$\mathrm{Se}(5)-\mathrm{Ni}(1)-\mathrm{Se}(6)$	91.0 (1)	$\mathrm{Se}(5)-\mathrm{C}(57)-\mathrm{C}(55)$	124 (2)
$\mathrm{Se}(1)-\mathrm{C}(49)-\mathrm{Se}(4)$	108 (1)	$\mathrm{C}(57)-\mathrm{C}(55)-\mathrm{C}(54)$	125 (2)
$\mathrm{Se}(1)-\mathrm{C}(49)-\mathrm{C}(50)$	126 (2)	$\mathrm{C}(57)-\mathrm{C}(55)-\mathrm{C}(60)$	119 (2)
$\mathrm{Se}(4)-\mathrm{C}(49)-\mathrm{C}(50)$	126 (2)	$\mathrm{N}(3)-\mathrm{C}(54)-\mathrm{C}(55)$	180 (2)
$\mathrm{C}(49)-\mathrm{C}(50)-\mathrm{C}(51)$	121 (2)	$\mathrm{N}(6)-\mathrm{C}(60)-\mathrm{C}(55)$	176 (3)
(49)-C(50)-C(59)			

Fig. 2. Stereoscopic drawing of the molecule.

Discussion. The geometry of the $\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]^{+}$cation is tetrahedral, in good agreement with other determinations (e.g. Cowie \& Bennett, 1976) and is not further discussed. In the anion six Se atoms are located around the central metal at an average distance of 2.387 (1) \AA, forming a slightly distorted octahedron. Each ligand is planar. Surprisingly, in the anion the $\mathrm{C}=\mathrm{C}(1.36 \AA)$ and $\mathrm{C} \equiv \mathrm{N}(1.15 \AA)$ distances are very similar to those in $\left(\mathrm{H}_{3} \mathrm{CS}\right)_{2} \mathrm{C}=\mathrm{C}(\mathrm{CN}) \mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{Br}(1.37$ and $1.14 \AA$) (Abrahamsson, Rehnberg, Liljefors \& Sandström, 1974). This shows that the stabilization of the $\mathrm{Ni}^{\mathrm{IV}}$ chelate cannot arise from an extended

Table 3. Selected structural parameters of complexes with $M \mathrm{Se}_{6}$ cores and geminal ligands

	$2.387(1) \AA$	$2.391(5) \AA$
$M-\mathrm{Se}$	$2.995(1)$	$3.00(1)$
$\mathrm{Se} \cdots \mathrm{Se}($ intra $)$	$3.515(1)$	$3.515(5)$
$\mathrm{Se} \cdots \mathrm{Se}($ inter $)$	$1.86(1)$	$1.78(3)$
$\mathrm{Se}-\mathrm{C}$		$1.48(8)$
$\mathrm{C} \cdots \mathrm{N}$		
$\mathrm{C}=\mathrm{C}$	$77.36(2)$	$77.4(4)^{\circ}$
$\mathrm{Se}-M-\mathrm{Se}$	$107.5(5)$	$114(1)$
$\mathrm{Se}-\mathrm{C}-\mathrm{Se}^{\prime}$	1.29	1.18
s / h		

delocalization of charge on the ligands. Therefore, the oxidation of complexes containing such ligands should be described as loss of electrons from the NiSe_{6} moiety exclusively (Coucouvanis, Hollander \& Pedelty, 1977). The ratio s / h is $1 \cdot 29$, where s is a side of a Se_{3} triangle and h the perpendicular distance between two triangles of the octahedron (Stiefel \& Brown, 1972). The Se_{3} triangles are twisted with respect to each other by 49.5°. The average bite angle is $77.67(7)^{\circ}$. A further useful criterion in the structure discussion is the trans $\mathrm{Se}-\mathrm{Ni}-\mathrm{Se}^{\prime}$ angle ($136 \pm 1^{\circ}$ in the known trigonal prisms and 180° in the perfect octahedron) which was found to be $164 \cdot 1(1)^{\circ}$. In $\left\{\mathrm{C}_{7} \mathrm{H}_{7}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}\right]_{2}\left[\mathrm{Fe}\left\{\mathrm{S}_{2} \mathrm{C}=\right.\right.$ $\left.\mathrm{C}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}\right\}_{3}$, a further tris-chelate with 1,1 -disubstituted 2,2-ethylenedichalcogenolate ligands and a central metal in the oxidation state +4 (Coucouvanis, Hollander \& Pedelty, 1977), $s / h=1 \cdot 29, \theta=49 \cdot 0^{\circ}$ and an average trans $\mathrm{S}-\mathrm{Fe}-\mathrm{S}^{\prime}$ angle of 158.97 (4) ${ }^{\circ}$ were found. The $\mathrm{Ni}-\mathrm{Se}$ distance and the bite angle $\mathrm{Se}-\mathrm{Ni}-\mathrm{Se}$ in the $\left[\mathrm{Ni}\left\{\mathrm{Se}_{2} \mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}\right\}_{3}\right]^{2-}$ anion are also comparable with the values found for the $\mathrm{Ni}^{1 \mathrm{~V}}$ trischelate of N, N-dibutyldiselenocarbamate (Beurskens \& Cras, 1971), also having octahedral coordination (Table 3). Further X-ray structure analyses of tris-chelates of such ligands have not yet been published.

The authors thank Professor Dr E. Hoyer for his interest and for helpful discussions. The financial support of the Research Community of Slovenia is also gratefully acknowledged.

References

Abrahamsson, S., Rehnberg, G., Liljefors, T. \& Sandström, J. (1974). Acta Chem. Scand. Ser. B, 28, 1109-1120.
Beurskens, P. T. \& Cras, J. A. (1971). J. Cryst. Mol. Struct. 1, 63-67.
Coucouvanis, D., Hollander, F. J. \& Pedelty, R. (1977). Inorg. Chem. 16, 2691-2696.

Cowie, M. \& Bennett, M. J. (1976). Inorg. Chem. 15, 1589-1595.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Dietzsch, W., Kirmse, R., Hoyer, E., Marov, I. N. \& Belyaeva, V. K. (1978). Inorg. Chem. 17, 1665-1667.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Main, P., Woolfson, M. M., Lessinger, L., Germain, G. \& Declerce, J. P. (1977). MULTAN 77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain-la-Neuve, Belgium.

Pierpont, C. G. \& Eisenberg, R. (1971). J. Chem. Soc. A, pp. 2285-2289.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The XRAY system - version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Dayidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Stiefel, E. I. \& Brown, G. F. (1972). Inorg. Chem. 11 , 434-436.

Tetrahedral and Octahedral Cobalt(II) in Hexaaquacobalt Tetrachlorocobaltate-18-Crown-6-Acetone*

By T. Blake Vance Jr and Elizabeth M. Holt \dagger
Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA
Cortlandt G. Pierpont
University of Colorado, Boulder, Colorado 80309, USA
and Smith L. Holt \dagger
Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA

(Received 21 June 1979; accepted 26 September 1979)

Abstract

Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\mathrm{CoCl}_{4}\right] . \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6} . \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\), triclinic, $P \overline{1}, a=10.251$ (4), $b=11.619(5), c=$ 13.603 (7) $\AA, \alpha=92.64$ (4), $\beta=95.05$ (4), $\gamma=$ $112.38(3)^{\circ}, V=1487$ (1) $\AA^{3}, Z=2, D_{m}=1.53$ (1), $D_{c}=1.54 \mathrm{Mg} \mathrm{m}^{-3}, \mu($ Mo $K \alpha)=1.57 \mathrm{~mm}^{-1}$. The structure of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{IICoCl}{ }_{4}\right]$. 18-crown-6.acetone, determined by heavy-atom techniques and refined by least-squares methods using diffractometer data to R_{1} $=4.3 \%$ (4246 observed reflections), includes cobalt(II) in two coordination geometries: a tetrachlorocobaltate anion and a hexaaquacobalt cation. The crown ether ring does not incorporate the metal into its cavity.

Introduction. Su \& Weiher (1968) reported the isolation of a blue material from acetic acid which they formulated as $2 \mathrm{CoCl}_{2}$. dicyclohexyl-18-crown-6, a $2: 1$ complex. Based on the physical properties of this material, two possible structures were proposed (Fig. 1). A more recent report (Knöchel, Klimes, Oehler \& Rudolph, 1975) described the formation of transitionmetal complexes of unsubstituted 18 -crown-6; these

[^1]were 2:1 complexes containing nitrate or chloride. Farago (1977) has reported complexes of varying stoichiometries including a series of five complexes of CoBr_{2} and 18-crown-6.

Structural investigations have been limited to: $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)\right]^{+} .18$-crown-6. $\mathrm{NO}_{3}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$ (Knöchel, Kopf, Oehler \& Rudolph, 1978) where octahedral Mn is coordinated to five water molecules and one nitrate ion, and CuCl_{2}. 12 -crown- 4 where the metal is directly bound to the polyether O atoms (van Remoortere, Boer \& Steiner, 1975). We have determined the structures of a series of transition-metal complexes with crown ethers to examine the structural consequences of change of ring size and metal ion (part II: Vance, Holt, Varie \& Holt, 1980; Vance, 1978).

Hexaaquacobalt(II) tetrachlorocobaltate(II)-18-crown-6-acetone (Farago, 1977) was crystallized in a form suitable for X-ray diffraction studies. A crystal (approximately $0.5 \times 0.5 \times 0.5 \mathrm{~mm}$) was coated with epoxy glue and mounted on a Syntex P ī diffractometer with graphite-monochromatized radiation (Mo Ka, $\lambda=0.71069 \AA$). Least-squares refinement of the angular coordinates of fifteen independent reflections gave the unit-cell parameters and their standard deviations. The $\theta / 2 \theta$ scan mode, at an invariant scan

[^0]: * Lists of structure factors, anisotropic thermal parameters and H atom parameters, and the atomic parameters, distances and angles of the cation have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34757 (28 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Transition-Metal-Crown Ether Complexes. I.
 \dagger Current address: Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA. Correspondence should be addressed to EMH at this address.

